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Abstract 

The 11 pairs of enantiomorphic space groups with screw axes 
of opposite handedness generally can be distinguished when 
the asymmetric unit has known chirality. However, when the 
asymmetric unit has non-crystallographic rotational symmetry 
of the same fold or a multiple (in, where i is a positive integer) 
and the rotation axis is parallel to the screw axis, the screw axis 
reduces to a pure translational element. Under these 
circumstances, pairs of enantiomorphic space groups cannot 
be distinguished. 

I. Introduction 

Because of Friedel's law, the 11 pairs of enantiomorphic space 
groups with screw axes of opposite handedness (Vos & 
Buerger, 1989) cannot be distinguished from the diffraction 
pattern alone. However, the space group can be unambigu- 
ously determined if a good anomalous signal is available 
(Bijvoet, 1949, 1954; Blundell & Johnson, 1976; Stout & 
Jensen, 1988). Even in the absence of an anomalous signal, 
when the absolute configuration of the chemical structure is 
known, one choice within the enantiomorphic pair generally 
refines better than the other (Ghosh, O'Donnell ,  Furey, 
Robbins & Stout, 1982; Stout, Turley, Sieker & Jensen, 
1988; Stout & Jensen, 1988). 

We have encountered a case in which the handedness is more 
difficult to determine, in the course of solving the crystal 
structure of amphibian M ferritin (Ha, Thiel & Allewell, 
1997). Amphibian M ferritin has 432 molecular symmetry and 
crystallizes in space group P41212 or P43212. The molecular 
fourfold rotation axis is parallel to the z axis but displaced by 
"--9 A, and the molecular twofold axis is parallel to the x axis. 
Refinement proceeds equally well for both space groups. In 
this report, we prove that the diffraction patterns are indeed 
indistinguishable. This ambiguity will apply to all 11 pairs of 
enantiomorphic space groups when there is a non-crystal- 
lographic rotation axis of the same or multiple fold parallel to 
the crystallographic screw axis, and the screw axis reduces to a 
pure translation under these conditions. This issue is most 
likely to arise with macromolecule assemblies such as viruses 
and multisubunit proteins (Wang & Janin, 1993). 

2. Proof and discussion 

When identical elements within the unit cell are generated by 
translation, the packing can be described as the convolution of 
one structure motif within the asymmetric unit with a packing 

delta function, which has a value of one at the origin of each 
motif and zero elsewhere. The Fourier transform of the crystal 
can then be treated as the product of three independent terms: 

f(lattice • packing • molecule) 

-- f(lattice) x f(packing) x f(molecule).  (1) 

f ( g )  is the Fourier transform of function g; g .  w is the 
convolution of function g with function w; lattice is a 
conventional delta function defining a lattice with a value of 
one at the lattice points; packing is a delta function with a value 
of one at the origin of every structure motif; molecule is the 
electron-density distribution of the structure motif. 

We will focus on the transform of the packing term. Without 
losing generality, we will use P41 (packing function gl) vs P43 
(packing function g2) as an example. In the case of gl,  suppose 
that coordinates of the origin of one structure motif are 
(x, y, z). Then, 

fhkt(gl) = exp[2rti(hx + ky + lz)] 

+ exp[2ni(-hx - ky + lz + l/2)] 

+ exp[2rci(-hy + kx + lz + 1/4)] 

+ exp[2rti(hy - kx + lz + 3l/4)]. (2) 

In the case of g2, the coordinates of the origin of the same 
structure motif are (x', y', z'). Then, 

Fhkt(g2) -- exp[2rti(hx' + ky' + lz')] 

+ exp[2rti(-hx' - ky' + lz' + 1/2)] 

+ exp[2rti(-hy'  + kx' + lz' + 31/4)] 

+ exp[27ti(hy' - kx' + lz' + 1/4)] 

= exp[2rti(hx' + ky' + lz')] 

+ exp[2ni(-hx '  - ky' + lz' - 1/2)] 

+ exp[2ni ( -hy '  + kx' + lz' - l/4)] 

+ exp[(2ni(hy' - kx' + lz' - 3l/4)] (3) 

F/&i(g2) = exp[27zi(-hx' - ky' - / z ' ) ]  

+ exp[2rti(hx' + ky' - lz' + l/2)] 

+ exp[2rti(hy' - kx' - lz' + l/4)] 

+ exp[2rti(-hy'  + kx' - lz' + 31/4)] 

= exp[2rti(hS:' + k~' + 1~')] 

+ exp[2rti(-h~' - k~' + E:' + l/2)] 

+ exp[2ni(-h~'  + k.~' + E:' + 1/4)] 

+ exp[(2ni(hy - k2' + l~' + 31/4)]. (4) 
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It is apparent that if x' = ~, y' = f: and z' : ~: 

fi, i,-t(g2) = fhkt(gl)" (5) 

Also, from Friedel's law, 

If~k-t(gz)l = Ifhkt(g2)l- (6) 

Combining (5) and (6), we have [fhkt(gl)l = [fhkt(g2)l" This 
conclusion is equally valid for the other ten pairs of 
enantiomorphic space groups. 

When the packing function and structure motif are 
combined according to (1), 

If(lattice • gl * molecule)l 

= If(lattice)l x lf(gl)l x If(molecule)l 

= If(lattice)l x If(g2)l x If(molecule)l 

= If(lattice • g2 * molecule)l. 

Thus, upon choosing one enantiomorphic space group (gl) 
and the origin of the motif at (x, y, z), it is always possible to 
place the origin of the same structure motif at (,~, ~, ?:) in the 
other enantiomorphic space group (g2) so that the amplitudes 
of the resulting transform are identical. 

Since the non-crystallographic symmetry does not have the 
stringent constraints imposed by the crystallographic symme- 
try, it is likely that very accurate data will resolve the 

ambiguity. Nevertheless, when the non-crystallographic sym- 
metry is close to the conditions discussed above, the 
differences between enantiomorphic space groups will be 
small or even undetectable. We would argue that when the data 
set has moderate resolution and quality, as is likely to be the 
case for many protein crystals, it is better to acknowledge the 
ambiguity than to overemphasize the differences. 
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